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The validity of the Weak Equivalence Principle relative to a local inertial frame is
detailed in a scalar-vector gravitation model with Lorentz-Poincaré type interpreta-
tion. Given the previously established first Post-Newtonian concordance of dynamics
with General Relativity, the principle is to this order compatible with GRT. The grav-
itationally modified Lorentz transformations, on which the observations in physical
coordinates depend, are shown to provide a physical interpretation of parallel trans-
port. A development of “geodesic” deviation in terms of the present model is given as
well.
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1. INTRODUCTION

Viable formulations of gravitation should fulfill, al least to the required ex-
perimental accuracy, the Equivalence Principle (EP) (Will, 1993) (see Damour
(2001) for comments). The Weak Equivalence Principle (WEP) purports the in-
distinguishability of inertial and gravitational mass. The EP on the other hand
requires physical laws to be equivalent in all local free-falling frames and, equiv-
alent with their expression in unaccelerated frames without a gravity field. The
WEP can also be stated as the principle of universality of free-fall or, that grav-
itation vanishes for the free-falling observer. It is well known however that such
an observer will only locally establish that result. Each small spatial separation
between a free-falling observer and some free-falling point particle—even if at
some instance it was at rest relative to the falling observer—will cause a relative
acceleration, e.g. Weinberg (1972), p. 148. The free-falling observer must thus be
reduced to a local inertial frame (LIF).
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A free-falling observer crossed by some free-falling system with a non-zero
relative velocity, must—according to the WEP—have a zero relative acceleration
only while meeting at the intersection point of their trajectories. That this is the case
for a LIF observer is a priori not intuitive given the free-fall acceleration relative
to a static observer (McGruder, 1982; Bunchaft and Carneiro, 1998; Broekaert,
2005a). Damour’s stipulation of the Weak Equivalence Principle, or “universality
of free-fall,” is precise in this sense ((Damour, 1994), emphasis added):

C3: Principle of geodesics and universality of free-fall : small, electrically neutral, non
self-gravitating bodies follow geodesics of the external spacetime (V, g). In particular,
two test bodies dropped at the same location and with the same velocity in an external
gravitational field fall in the same way, independently of their masses and compositions.
(a)

In GRT, a static observer will attribute a free-fall acceleration with explicit de-
pendence on the kinematics of a particle—using generic coordinates (McGruder,
1982; Bini et al., 1995; Bunchaft and Carneiro, 1998) (a coordinate-free space-
time decomposition of a covariant expression):

a = g − v(v.g) (1)

where a is the general local 3-proper-acceleration of a particle in a static gravita-
tional field and g is this same acceleration but with the “physical” relative velocity
v = 0. Following the choice of adapted coordinates (e.g. Fermi coordinates) this
equation amounts to a kinematic decomposition of the observed gravitational ac-
celeration, it is not a transformation. From this decomposition however it follows
that two locally coincident free-falling point particles will expose a mutual relative
acceleration to the static observer—the latter third object acting as the reference
frame. This mutual acceleration is to be understood as the acceleration of the
connecting vector of the two bodies in terms of the difference of their location as
measured by the static observer, e.g. Rindler (1979), p. 36. For a static observer; at
the coincidence of two free-falling particles the observed mutual acceleration does
in general not vanish; a term due to kinematical differences between the particles
remains:

arel.12 ≡ a1 − a2 = −(v1.g)v1 + (v2.g)v2 (2)

This kinematical feature—apparent to a static observer—is still conform with
the WEP statement (a) by Damour. In previous work we have shown that in the
Lorentz-Poincaré model—introduced in the next section—the same kinematical
effects are apparent in the static observer case. In the latter model the acceleration
was obtained by a coordinate transformation; from coordinate space and time to
local coordinates of the static observer (Broekaert, 2005a), while the coordinate
space acceleration itself was obtained by a Hamiltonian principle (Broekaert,
2005b).
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In order now to validate the WEP such that “the equivalence of acceler-
ation and gravitation is realized” (b)—in comparison to (a)—the local dynam-
ics of one or more non-mutually interacting particles related to a free-falling
frame should be that of free particles and no kinematical relative or mutual ac-
celerations should remain at coincidence. The instant free-fall of the previously
static observer—mentioned above—should indiscriminately annihilate all these
residual relative kinematical accelerations (2) between random free-falling par-
ticles. In GRT for a Local Inertial Frame it is well known that these acceler-
ations are zero. The covariant derivative of a tensor—e.g. the four-velocity—
can be expressed as the sum of the ordinary derivative and changes of the ten-
sor due to parallel transport (e.g. Kenyon (1990), sec 6.1, or Stephani (2004),
sec 18.3);

DUa

Dλ
= dUa

dλ
+ �a

nmUm dxn

dλ
(3)

The connections thus express the change of a tensor along a certain spacetime
curve. In the LIF coordinates the connections are locally zero and any four-
acceleration of a free-falling particle crossing the LIF-observer will be momenta-
neously zero: in the LIF’s local coordinates the four-velocity does not vary during
the (infinitesimal!) parallel transport while in coordinate space the four-velocity
does vary according to the equation of motion of the particle.

The vanishing of the relative accelerations (2) for spatially coinciding systems
is thus realized by having recourse to the covariant derivative, Eq. (3), in the
definition of the particle’s acceleration. In the coordinate space description the
zero covariant acceleration is invoked to obtain the (non zero) particle acceleration
dU/dλ over its trajectory (e.g. Weinberg (1972) p 212), while in local coordinates
of the LIF the zero covariant acceleration reduces to a zero physical relative
acceleration due to the vanishing of the connections.

Now in the L-P model as well we will require the introduction of parallel
transport in the definition of the derivative. We will detail below how this procedure
naturally emerges in the L-P model and, leads in the model’s context to the validity
of the WEP in the LIF perspective as well.

A short introduction to the L-P model is given in the following section, a de-
tailed development and calculation can be found in our previous work (Broekaert,
2002, 2004b, 2005a,b). We note that Lorentz-Poincaré type properties have been
studied as well in alternative models of gravitation in the literature; e.g. the valid-
ity of the WEP in a scalar gravity model—concerning the point-particle limit of
an extended body—was recently discussed in terms of an “unaffected Euclidean
metric” by Arminjon (2006).
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2. GRAVITATION MODEL WITH LORENTZ-POINCARÉ
TYPE INTERPRETATION

The L-P gravitational model maintains the effects of length shortening (“rod
contraction”) and time dilation (“clock slowing”) as we understand them in the
Lorentz-Poincaré interpretation of Special Relativity. A recent discussion of this
“dynamical” interpretation of SRT based on the Lorentz-covariance of the fun-
damental interaction of the micro constituents in rods and clocks is given in
Brown (2005), see also Bell (1987). Notwithstanding that Lorentz’s electromag-
netic preliminary gravitation theory Lorentz (1990) nor Poincaré’s Newtonian
Lorentz-covariant gravitation theory Poincaré (1906) were not conceived along
the line here presented; we introduce the term L-P type because of the continuity
with the Lorentz-Poincaré interpretation of SRT originally pertaining to physical
effects on configurations of matter due to motion. Now however, these effects
are due both to position in the gravitation field as well as a relative kinematics
(Broekaert, 2004b, 2005b). This L-P type of development will explicitly use two
levels of description: gravitationally affected observations versus gravitationally
unaffected “observations.” A similar procedure is used in field approaches to rela-
tivity where “unrenormalized” and “renormalized” coordinates are distinguished,
see e.g. the work of Cavalleri and Spinelli (1980); Thirring (1961); Dehnen et al.
(1960); Dicke (1957); Wilson (1921) and, compare to Brown (2005) for a similar
dynamical analysis of GRT sans issue of gravitational effects on observations, and
Dieks (1987) and Sexl (1970) for the relation with geometric conventionalism.

Note that, as the unaffected perspective corresponds to the coordinate space
description in GRT, it can not truly be considered observable. Moreover gravitation
can not be shielded from, thus at most can the unaffected perspective be calculated
starting from observable affected quantities. Similarly in GRT, e.g. Rindler (1979)
p 142, a transformation of coordinate time and distance into local time and distance
is required in order to obtain observable quantities.

The gravitational effects on space and time observations were developed as
a gravitationally modified Lorentz Transformation (GMLT) for space and time
intervals. In particular these transformations relate affected and unaffected de-
scriptions. It was also shown that the elimination of the unaffected perspective
from the GMLT between two local observers restores the local Lorentz covariance
of the relations (Broekaert, 2005a). Therefore—even as the GMLT expose the
spatial variability of the velocity of light in coordinate perspective—the locally
observed velocity of light, c′, remains the universal vacuum value.

In this model, related but distinct GMLT’s for energy and momentum were
fitted to the static Newtonian potential energy. These transformations give the
Hamiltonian expressions for particles and photons in the unaffected perspective
by simply assuming the special relativistic expressions in the affected perspective.
With the resulting Hamiltonian, the equations of motion verify till 1-PN the
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gravitational phenomenology of GRT (Broekaert, 2005b). In fact, in the L-P
model each quantity with different physical dimension is expected to transform
according to a different power of the scaling function and according to covariant
or contravariant GMLT’s, the former aspect is similar to the gravitation model by
Dicke (1957).

We state explicitly now the space and time GMLT for further developments
in the next section. Let a physical—thus affected—observer at coordinate po-
sition r locally measure space and time intervals (dx′, dt ′). The space and time
GMLT—for which we will adopt the standard mathematical symbol for the Lorentz
transformation �µ

ν(v, r) but now with two arguments; velocity and space (and
time) location—will relate these to intervals (dx, dt) in the unaffected perspective
(Broekaert, 2005b):(

dt ′

dx′

)
= �(u, r)

(
dt

dx

)
,

�(u, r) ≡
(

γ� −uc−2γ�

−uγ�−1 1�−1 + uiuj

u2 (γ − 1)�−1

)
(4)

where � = �(r), c = c′�2 and γ = (1 − u2/c2)−1/2. We remark that the inverse
GMLT—transforming S ′ into S0 quantities—is given by:

�−1(u, r) ≡
⎛
⎝γ�−1 −u′c′−2

γ�−1

−u′γ� 1� + u′
iu

′
j

u′2 (γ − 1)�

⎞
⎠

=
(

γ�−1 uc−2γ�

uγ�−1 1� + uiuj

u2 (γ − 1)�

)
(5)

The second member is written in hybrid form—the expression contains S0 terms;
u and c instead of u′ and c′—being better adapted to use in the next section.

In the case of a non-stationary source, the GMLT must take into account the
induced velocity field w caused by source movement (Broekaert, 2004b):

�(u0, r) =
⎛
⎝γ0� −u0c

−2
0 γ0�

−u0γ0�
−1 1�−1 + u0 iu0j

u2
0

(γ0 − 1)�−1

⎞
⎠ (6)

by an additional “Galilean” relation in coordinate space, according to a local
translation by the field w. The Galilean composition of the effective velocity
is considered a first-order approximation of the physical result of the induced
velocity field on the classical velocity:

dx0 = dxw − wdtw, dt0 = dtw (7)
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In GRT the quantity corresponding to w is the ‘vector potential’ ζ—the first
relevant order of gi0—caused by the movement of the source in coordinate space;
Weinberg (1972), eq 9.1.62. The frame velocity u0 and the velocity of light c0

are given by u0 = u − w and c0 = |cw − w|. We emphasize that while the model
deploys spatially-variable speed of light (VSL), the locally observed velocity of
light remains the universal vacuum value c′ in conformity with the local Minkowski
metric.

For completeness we note that the gravitational scaling and induced velocity
fields {�, w} are given by the equations:

�� = 4πG′

c′2 ρ(r)� + (∇�)2

�
, �w = −16πG′

c′2 ρvρ(x, t) (8)

in no-retardation approximation (Broekaert, 2004b). The L-P model thus relies
on a scalar-vector field representation of gravitation; a formalism with historic
precedence but also recent development, e.g. Winterberg (1988a) and Vlasov
(1995).

3. ACCELERATION TRANSFORMATIONS IN THE L-P MODEL

We have shown in previous work Broekaert (2005b, 2004b) that based on a
Hamiltonian description, the L-P model gives explicitly the particle and photon
1-PN gravitational accelerations in the unaffected perspective, e.g. (Weinberg,
1972) Eq 9.2.1 (static field);

a(r, ũ) = −(c′2 + v2)∇(ϕ + 2ϕ2) + 4vv.∇ϕ (9)

As we expect, the basic premiss of the WEP as “equivalence of gravitation and
acceleration” is already valid in the unaffected perspective; the acceleration is
independent of the mass and energy of the falling entity. The transformation of
this expression into the affected LIF perspective will not impair that quality. The
present issue is however how to do this transformation to the LIF and show that
spurious kinematic terms of type Eq. (2) vanish.

In previous work (Broekaert, 2005a), we found that an acceleration
transformation—as standard time-derivative of the velocity transformation—in
the case of a fixed observer leads to a correct rendition of GRT relation in sim-
ilar conditions (u = 0, w = 0) (Bini et al., 1995; Bunchaft and Carneiro, 1998;
McGruder, 1982):

a′ = �−3{a − 2v′�2ϕ̇} (10)

The acceleration transformation (10) can not be adapted to the LIF observer. The
observer in free-fall can not simply observe the value of a velocity of a remote
system. In the case of the static observer this can done by rescaling, in its fixed
frame, with respect to the value of � at the remote location. In the LIF case the
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scaling of the observer frame itself is changing due to its proper free-fall trajectory
as well.

In the case of the free-falling observer we must take into account the proper
movement of the observer—frame velocity u and frame acceleration a(u)—and
find a procedure to relate remote values of the velocity of the observed particle to
local values at the final location and time of the observer. The relative acceleration
is then defined using the—both local—final and intial value of the velocity over a
time-interval dt ′;

a′
(PT ) ≡ lim

dt ′→0
(v′

f |local
− v′

i |local
)/dt ′ (11)

This reduction to local values of quantities will be done according to a procedure
that amounts to parallel transport in GRT (e.g. Kenyon (1990), sec. 6.1).

3.1. Parallel Transport

An unequivocal physical procedure for a free-falling observer is constructed
for obtaining a local value from a remote observation in the gravitational field.
The procedure requires the aid of an auxiliary affected observer: a free-falling
auxiliary observer on a trajectory such that it evolves from the initial remote
location at instance 1 to the final local location at instance 2 of the LIF observer.
The free-fall evolution will define in an at least locally unique way the trajectory
1 to 2, since the geodesic corresponds to the longest—and locally unique—curve
between two spacetime points (e.g. Stephani (2004), p 99, 131). This auxiliary
observer will consider invariant a previously measured quantity which it “carries”
subsequently along, as we will see in the next subsection. However, again from the
unaffected perspective one would still consider that both the observed quantity and
the observer’s measurement standards are equally affected. Subsequently the free-
falling auxiliary observer during its evolution retains constant the measured values,
because its measurement standards should appear invariably self-similar as we will
demonstrate. Note thus, that the gravitational and kinematic effect—monitored by
the GMLT—continuously vary over the trajectory, while the quantity measured
by the free-falling affected observer remains the same from the initial till the final
instance of the trajectory. This reflects precisely what happens in GRT; from Eq. (3)
we see that the connection term describes the change in coordinate perspective,
while in the LIF—both of the observer and the transporting frame—the quantity
will remain invariant because the connections vanish. From the GMLT at the initial
and the GMLT at the final instance the invariant quantities of the affected free-
falling auxiliary observer can be eliminated and, a relation between coordinate
space and time intervals locally and at the remote location is established. The
procedure—here developed by GMLT—precisely expresses parallel transport in
GRT since the relation between the initial point and final point is the free-fall
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evolution, i.e. the geodesic. The connections governing the parallel transport in
GRT are implicitly present in the L-P model in their double contraction over the
4-velocity in the free-fall acceleration, Eq. (9), of the transporting frame, e.g.
Weinberg (1972), p 212.

The transport procedure is formalized subsequently. We first notice that the
tensorial rank of an observed quantity T will determine the precise transformation
that relates the affected observer and the unaffected description; i.e. �µ

σ�ν
τT

στ

for rank-2, �µ
σT σ for rank-1, etc. Since Eq. (11) requires the transformation of

velocities, the GMLT (4) applicable to the 4-vector of space and time intervals
will be used.

At initial space and time instance 1 the S0 space and time intervals {dt1, dx1}
are transformed to a free-falling observer S ′

PT , the auxiliary transporting observer.
S ′

PT has velocity ũ1 such as to evolve by free-fall to space and time instance 2. The
affected intervals observed by S ′

PT are given by �(ũ1, 1)(dt1, dx1). During free-
fall these affected quantities should remain invariant to S ′

PT . At final instance 2
the inverse transformation �−1(ũ2, 2) gives the transported intervals in coordinate
perspective of S0 at instance 2:

(
dt1PT12

dx1PT12

)
= �−1(ũ2, 2)�(ũ1, 1)

(
dt1

dx1

)
, ũ2 = ũ1 +

∫ 2

1
a(r, ũ) dt (12)

where a(r, ũ) is the free-fall acceleration in coordinate space, which to first Post-
Newtonian is given by Eq. (9). The application of the transport procedure to the
definition of acceleration Eq. (11) in LIF-perspective is now straightforward.

3.2. Acceleration in LIF-coordinates

Let a free-falling particle be observed by a free-falling observer. The LIF-
observer attributes an acceleration to the particle, which according to the WEP
should be zero when the particle is spatially coincident with the observer. In order
to calculate the acceleration the observer requires the initial and final velocity over
an infinitesimal time interval. Let the observer measure the final—local—value of
the particle’s velocity at the intersection of their free-fall trajectories. According
to Eq. (11) then the initial velocity, an instance dt prior to intersection, should be
rendered local to the intersection instance by parallel transport.
In the present case (see Fig. 1) the auxiliary transporting frame is identical to the
particle’s rest frame S ′

v; from 1 it reaches 2 at time t1 + dt by free-fall (t1 = t1� ).
The observer frame S ′

u evolves from initial location 1� to 2 while the particle S ′
v

parallel transports its initial values from 1 to 2. At the intersection of the free-fall
trajectories 2, S ′

v disposes of the required initial velocity v1PT
and final velocity

v2. The parallel transport is thus described by relation (12) with initial velocity
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v
1

u1

S'u

S'v

u
2

v1PT

1*

v2

2

1

Fig. 1. A scheme of two free-fall trajectories intersecting at
location and coincidence time instance 2. An instance dt prior
to intersection the observer and the observed particle respec-
tively had velocities u1 and v1. The free-falling particle frame
S′

v effectively parallel transports the remote initial value v1 at
1 to the observer S′

u at 2 in its form v1PT . (1 and 1∗ are at same
time instance)

and final velocity:

ũ1 ≡ v1, ũ2 ≡ v2 = v1 + a(1, v1)dt (13)

where a is the free-fall acceleration Eq. (9).
We want to check the WEP in the affected perspective; we must therefore

express the transported quantities {dt1PT
, dx1PT

} in terms of measurements of
the LIF-observer S ′

v , using relation (4). Then the attributed intervals in affected
perspective are;(

dt ′1PT12

dx′
1PT12

)
= �(u2, 2)�−1(ũ2, 2)�(ũ1, 1)

(
dt1

dx1

)
(14)

The relative acceleration of the particle relative to S ′
v , according to (11), requires

dt ′ the time lapse in affected perspective between instances 1 and 2. Thus while
dt1 and dt2 are the intervals in which the velocities are measured, dt is the interval
in which the acceleration is measured. In the unaffected perspective these intervals
are all taken identical, while in affected perspective these are given by;

dt ′2 = �(u2, 2)0
µ(dt2, dx2)µ (15)

dt ′1PT12
= �(u2, 2)0

µ�−1(ũ2, 2)µκ�(ũ1, 1)κµ(dt1, dx1)µ (16)

dt ′ = �(u2, 2)0
µ(dt, dx)µ (17)
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Then following Eq. (11) the acceleration is given by

a′k
(PT ) = lim

dt ′→0

�(u2, 2)kµ
�(u2, 2)0

τ

(
(dt, dx2)µ

(dt, dx2)τ
− �−1(ũ2, 2)µν�(ũ1, 1)νσ

�−1(ũ2, 2)τρ�(ũ1, 1)ρω

(dt, dx1)σ

(dt, dx1)ω

)
1

dt ′

(18)
or in terms of velocities;

a′k
(PT ) = lim

dt ′→0

�(u2, 2)kµ
�(u2, 2)0

τ

(
(1, v2)µ

(1, v2)τ
− �−1(ũ2, 2)µν�(ũ1, 1)νσ

�−1(ũ2, 2)τρ�(ũ1, 1)ρω

(1, v1)σ

(1, v1)ω

)
1

dt ′

(19)

Notice that in this expression the GMLT that transforms the acceleration into
terms of the observer S ′

u is not relevant if the acceleration comes out zero, as it
operates on both parts of the subtraction. This essential feature formally describes
the fact that all locally coincident LIF’s—i.e. S ′� with whatever velocity u′� in
�(u′�, 2)—will ascribe a zero relative acceleration to any coinciding free-falling
particle.

Taking into account that parallel transport occurs with initial and final frame
velocities according to Eq. (13) the transport frame coincides with the free-falling
particle. We then immediately see that the remote value v1 of the velocity is
transformed proportional to the local value v2;

�−1(v2, 2)�(v1, 1)

(
1
v1

)
= γ −1

1 γ2�1�
−1
2

(
1
v2

)
(20)

It is clear that this transport can be viewed as a boost (time propagator) only in
case the initial and final velocities are related by free-fall acceleration and as such
be identified as “parallel” transport (which properly relates it to the connections
of GRT). This property shows that the transport relation, 1 to 2, must necessarily
be the evolution of free-fall; eventual other (unique) evolutions by a∗ �= a will not
transform (1, v1) proportional to (1, v2) as in Eq. (20), and will not lead to the
cancelation of the relative acceleration Eq. (19). For straightforward inspection
of Eq. (19) shows that the proportionality factor is cancelled in the final fraction
and the bracketed term turns out identically zero, irrespective the velocity of the
observer’s LIF as we have mentioned above.

The relative acceleration of a free-falling particle in the local coordinates of
the observer’s LIF-frame—and all coinciding LIF frames—is zero:

a′
(PT ) = 0 (21)

In the L-P type model, the Weak Equivalence Principle is thus fully satisfied in
the LIF perspective: at the intersection of their free-fall trajectories, the observer
and particle have a zero relative acceleration. This result is of course due to the
particular process of parallel transport which is embedded in the calculation of the
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derivative. While the standard derivative is an isotropic operation, the covariant
derivative is not; each initial remote value—required to make the difference with
the final local value for differentiation—is rendered local in an anisotropic but
unique manner according to the connectability by free-fall trajectory. Application
of different transport procedures (or e.g. the standard derivation which implicitly
uses invariant transport) would result in residual kinematic acceleration terms—as
in Eq. (2) for the static observer—while with the parallel transport protocol the
universality of free-fall emerges, i.e. with independence of the relative velocity.
The transport procedure with the invariance of the quantities in the auxiliary free-
falling transport frame is thus consistent with the resulting validation of the WEP
Eq. (21).

We have in the previous development not invoked the specific form of the
free-fall acceleration Eq. (9). The procedure thus hinges on the concept of free-fall
acceleration a in the definition of the adapted derivative d/dt(PT ), according to
Eq. (13), but not its explicit form. The free-fall evolution however implies the
uniqueness condition of the covariant derivative Eq. (11) and the necessary boost
condition Eq. (20) for satisfying the WEP. Thus in principle the WEP in the L-P
model can be fully satisfied in the sense of GRT, but in view of the 1-PN order of
the free-fall acceleration Eq. (9) the validation of the WEP in the sense of GRT is
only sustained till 1-PN at present.

Concerning the free-fall dynamics of the transporting frame in the case of
a free-fall observer, we notice that an observer submitted to a forced non-LIF
motion will again require an adapted definition of the derivative in relation to its
forced motion, e.g. in the case of the static observer the “adapted” transport in
coordinate space consists in retaining identically the remote value. The validation
of the WEP—in the sense of description (b)—is the concern for a LIF observer,
the description for other types of observers could receive attention in separate
dedicated work.

Finally we remark that in a LIF—reduced to the intersection point of the
orbitals—the WEP is found satisfied, it is known however that each separation
from this point produces relative acceleration again. We look in the following
section how this is described in the L-P type model.

3.3. Geodesic Deviation

In the LIF the tidal acceleration is proportional to the space and time separa-
tion of the particle from the observer. (The procedure of parallel transport includes
an irreducible time lag and thus restricts the derivative to time-like separations).
Tidal acceleration in a LIF is typically expressed in a configuration in which
two separated systems had identical velocities—relative to coordinate space—at
an earlier moment. In GRT the relative acceleration due to geodesic deviation
along the curve xµ(τ ) can be expressed in coordinates of the LIF observer (e.g.
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S'v

S'u

u
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u
4

v
2

2

1
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3

4

v
PT1

13
PT13

PT34

v
1PT13+34

PT24

u1
*

3
*u

4
*u

2
*u

24

Fig. 2. A LIF observer S′
u with an identical initial velocity as

a free-falling particle S′
v , u3 = v1, separation by a vector ξ

at space and time instance 3, is measuring the latter’s relative
acceleration. Auxiliary transport frames (dotted trajectories)
produce the local values v1PT13+34

and v2PT24
at final space

and time instance 4 of the observer. Notice that the trans-
ported initial value of the velocity v1 is obtained by a parallel
transport composed of PT13 with initial velocity u�

1 and final
velocity u�

3 and PT34 with initial velocity u3 and final veloc-
ity u4. The final part of the parallel transport is thus identical
to co-evolution with the observer S′

u.

Weinberg (1972), Eq. 6.10.1);

D2δxλ

Dτ 2
= Rλ

νµρδx
µ dxν

dτ

dxρ

dτ
(22)

where δxλ is the separation parameter between the particle and the LIF-observer.
We calculate the tidal acceleration now according to the L-P type model.

The LIF observer S ′
u requires again locally both the initial and final velocity

of the particle at respective instances 1 and 2 (see Fig. 2). During the present
“observation” the particle remains remote throughout and thus two remote values
must be rendered local for differentiation. Hereto auxiliary transporting frames
must evolve, one from 1 to 3 followed by 3 to 4 for the initial value and another,
from 2 to 4 for the final value of the particle’s velocity.
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We introduce shorthand notations now; in �(4), 4 indicates velocity and location
(u4, 4) and, 4� indicates (u�

4, 4), etc.
The relative acceleration in the LIF is then written according to

limdt ′→0(v′
2PT24

− v′
1PT13+34

)/dt ′, Eq. (11):

a′k
(PT ) = lim

dt ′→0

�(4)kµ
�(4)0

ν

×
(

�−1(4�)�(2�)(1, v2)µ

�−1(4�)�(2�)(1, v2)ν
− �−1(4)�(3)�−1(3�)�(1�)(1, v1)µ

�−1(4)�(3)�−1(3�)�(1�)(1, v1)ν

)
1

dt ′

(23)

where dt ′ = �(u4, 4)(1, u4)0dt = γ −1
4 (u4)�4dt .

In practice the expression of the relative acceleration is studied to the first
order in the separation four-vector ξµ. The explicit rendition of the relative accel-
eration can be done using the expressions for the GMLT Eqs. (4,5). It will be clear
that in the non-relativistic limit the usual Newtonian tidal acceleration is recovered
from Eq. (23);

a′
(PT ) ≈ lim

dt ′→0
(−δu43 + δv21 + δu�

42 − δu�
31)/dt ′ = c′2∇′(ξ.∇′ϕ) (24)

where we have used, next to configuration settings u3 = v1 and ξ,ξ0 = 0, the
standard first-order time developments of the approximated velocities u�

1 and u�
2

of the transport frames;

u�
1 ≈ v1 + ξ/ξ 0, u�

3 ≈ u�
1 − c′2∇ϕ1ξ

0,

u�
2 ≈ v2 + ξ/ξ 0, u�

4 ≈ u�
2 − c′2∇ϕ2ξ

0 (25)

and development of the gravitational potential;

ϕ4 ≈ ϕ2 + ξ.∇ϕ2 + ξ0∂0ϕ2, ϕ2 ≈ ϕ1 + dx.∇ϕ1 + dt∂tϕ1 (26)

and finally we have also used the contravariant space-time GMLT, S ′ to S0 for
gradient operators:

∇ = u′ 1

�(r)

(
(γ (u′) − 1)

u′ · ∇′

u′2 + 1

c′2 γ (u′)∂t ′

)
+ 1

�(r)
∇′ (27)

∂t = γ (u′)�(r)(∂t ′ + u′ · ∇′) (28)

Relativistic corrections to the Newtonian expression can be obtained by developing
both the parallel transport and the observer’s GMLT. A parallel transport PT24 in



A Lorentz-Poincaré Type Interpretation of the Weak Equivalence Principle 1735

coordinate perspective is given to first order (δϕ42, δu
�
42) by;

�−1(u�
4)�(u�

2)

≈

⎛
⎜⎝

1 − δϕ42 δu�
42c

−2 − 2u�c−2δϕ42

δu�
42 + u�(δϕ24(2 + u∗2c−2) 1(1 + δϕ42) + u�

i δu�
42j

c−2/2

+ u�.δu�
42c

−2/2) − δu�
42i

u�
j c

−2/2

⎞
⎟⎠ (29)

This transport expression then needs to work on (1, v2)µ. The same expression is
required with indices changed 4 → 3, 2 → 1. The observer’s GMLT at space and
time instance 4 is approximated according to;

�(u4) ≈
((

1 + u2
4/2c2

4

)
�4 −u4�4/c

2
4

−u4
(
1 + u2

4/2c2
4

)
/�4 1/�4 + u4iu4j /2�4c

2
4

)
(30)

and all terms in Eq. (23) need to be retained to the required order to match the
GRT expression (22).

We thus found the process of parallel transport, as defined in subsection (3.1.),
to be adequately applicable in the definition of the derivative of remote quantities
(11) as shown in the case of the validity of the WEP and the geodesic deviation in
a LIF.

4. CONCLUSIONS

In the Lorentz-Poincaré type model, the Weak Equivalence Principle in the
perspective of a LIF was studied by evaluating the relative acceleration of a
free-falling particle and an observer at the moment of their coincidence. In this
model our analysis of relative acceleration in a LIF exposed the requirement to
evaluate locally a remotely measured value. Thus in order to define an adapted
derivative in a LIF, a unique procedure had to be established to relate these quan-
tities. Transport over a free-fall trajectory uniquely and adequately relates—in an
anisotropic manner—remote with local values; in the present Lorentz-Poincaré
type model this relation is formally expressed by means of free-fall correlated
gravitationally modified Lorentz transformations. The GMLT at each instant of
the transport relate the invariant local measure—because consistent with the emer-
gent WEP the local measurement standards appear invariably self-similar over the
free-fall transport trajectory—to the varying measures in coordinate space. The
GMLT at the initial and the GMLT at the final instance of the free-fall trans-
port trajectory are combined then to relate the measures locally and at the re-
mote location. The resulting relation precisely corresponds to parallel transport
and the adapted derivative corresponds to the covariant derivative of GRT. In
GRT the change of 4-vector T due to parallel transport along a geodesic is ex-
pressed through the connections �µ

στT
σ dxσ . In the adapted derivative of the L-P
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model the connections implicitly appear as their double contraction over the 4-
velocity in the free-fall acceleration. With the procedure of parallel transport
included in the derivative, the Weak Equivalence Principle as the vanishing of
relative free-fall acceleration is then found satisfied in the LIF perspective. Since
the GMLT have been shown in previous work to produce 1-PN dynamics of GRT,
the validity of the WEP in the L-P type model only corresponds to the same order
to the one in GRT. Within the present L-P model itself, the principle is intrinsi-
cally satisfied with respect to the procedure of parallel transport. Finally we have
shown that the same procedure of transport can be applied to obtain the geodesic
deviation in the L-P type model.
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A Lorentz-Poincaré Type Interpretation of the Weak Equivalence Principle 1737

Butterfield, J. (2004). On the Persistence of Particles. Foundations of Physics 35, 233–269,
arXiv:physics/0401112.

Cavalleri, G. and Spinelli, G. (1980). Field-theoretic approach to gravity in flat space-time. La Rivista
del Nuovo Cimento 3, 8.

Damour, T. (1994). General relativity and experiment, Proceedings of the XIth International Congress
of Mathematical Physics, Paris, July 1994, gr-qc/9412024.

Damour, T. (2001). Questioning the Equivalence Principle, gr-qc/0109063.
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